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Statistical and graph-theoretic techniques are not necessar-

ily disjoint. For example, one may use knowledge about class

statistics to design more e�ective distance metrics for use in the

a�nity matrix. In the context of this paper, image segments are not neces-

A problem with using mixture-of-Gaussian models

for unsupervised texture segmentation is that a \mul-

timodal" texture (such as can often be encountered in

natural images) cannot be well represented by a single

Gaussian cluster. We propose a divide-and-conquer

method that groups together Gaussian clusters (es-

timated via Expectation Maximization) into homoge-

neous texture classes. This method allows to succes-

fully segment even rather complex textures, as demon-

strated by experimental tests on natural images. a priori

mixture distribution

mixing param-

eter

Algorithms for image segmentation can be roughly

divided into two categories: those that use statistical

models for describing the behavior of visual features,

and those that only require some measure of \simi-

larity" between features [9][11]. Recent graph cutting

techniques [10] are an instance of the latter. These

algorithms partition a graph describing the interrela-

tion between image pixels by minimizing a suitable

functional of the related \a�nity matrix". The en-

try of the a�nity matrix at position ( ) is a com-

bination of the di�erence in appearance between the

-th and the -th pixels and of their distance in the

image plane. Thus, these approaches seamlessly inte-

grate spatial and appearance coherence in a elegant

and general framework. Unfortunately, handling re-

lational graphs built from all the pixels in an image

is very challenging in terms of memory and compu-

tational power even for moderate size images (e.g.,

200 200 pixels), therefore heavy image subsampling

is in order.

Statistical techniques stand on the other side of the

spectrum . They assume that image features obey a

probabilistic model, and approach segmentation as a

general clustering problem, drawing on classical re-

sults of pattern recognition. Bayesian approaches

maximize the probability that a point character-

ized by the image feature ( ) belongs to the clus-

ter , i.e., ( ( )). Interdependence among nearby

pixels is taken into account, for example, by means

of Markov Random Field models. An advantage of

statistical techniques is that the �nal segmentation is

\soft", being expressed in terms of posterior proba-

bilities. This facilitates integration with other visual

features and/or with , \supervised" informa-

tion [6].

This paper proposes a simple statistical parametric

technique for texture segmentation. The statistical

description of textures has received much attention in

recent years. Texture features ( ) are typically ex-

tracted from the output of a set of scaled/oriented

�lters, which are supposed to capture local salient in-

formation in the neighborhood of each image point.

Several non-parametric techniques can be found in the

literature for estimating the marginal densities ( ( ))

in the case of homogeneous textures [8][2][5]. Para-

metric mixture models are the framework of choice for

segmentation. These models assume that a feature

is generated by one of possible processes (\com-

ponents"). The probability density function of can

thus be expressed by a

( ) = ( ) ( ) (1)

where ( ) is the conditional likelihood of the feature

generated by the component and ( ) is the prior

probability of the component (called

). The posterior probabilities ( ( )) are de-

rived straightforwardly from the mixture model using

Bayes' rule, and are used for the �nal segmentation.

Note that each component of the model corresponds

to exactly one image segment .
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2 Multimodal texture segmentation

sarily (and usually are not) connected.

There are actually two kinds of dependency, one concerning

the underlying class label distribution, and the other concerning

the feature distribution within each class[15].

Of course, one may argue that four homogeneous textures

can be seen in the scene, depending on the scale of the

used.

Mixture models owe their popularity in part to the

existence of an e�cient technique (the Expectation-

Maximization algorithm) for the maximum likelihood

parameters estimation [7]. In its simplest formulation,

the EM algorithm relies on two hypotheses: 1) a suit-

able model for the conditional likelihoods is known,

and 2) the observed samples are statistically indepen-

dent. Neither of these hypotheses is veri�ed in typ-

ical textures. The problem of sample independence

is fairly well understood; extensions of the EM algo-

rithm that use MRF modeling of the class label distri-

bution have been proposed [15][14]. In this paper we

tackle the �rst problem, the determination of a statis-

tical model for feature generation within each texture

class, originating our argument from the observation

that simple Gaussian models are inadequate to de-

scribe \multimodal" textures, such as can be often

encountered in practice.

Mixture of Gaussians are the most common in-

stance of mixture models, one reason being that Gaus-

sian conditional likelihoods allow for the E- and M-

steps of the EM algorithm to be solved in closed form

[7]. Each Gaussian cluster represents a \mode" of the

mixture distribution. Malik [3] call the cluster

centers \textons" and use them for compact texture

representation (via vector quantization). Our main

point here is that it is often necessary to use more than

one Gaussian cluster to represent an homogeneous tex-

ture feature distribution. For example, consider the

image of Figure 1(a), composed by the juxtaposition

of a Brodatz texture and of the same texture rotated

by 45 . In this simple experiment, we used a bank

of Gabor �lters at four orientations to extract texture

features. It is easy to convince oneself that the feature

distribution in each texture patch is bimodal, due to

the two presence of two principal orientations. There-

fore, a 2-components mixture-of-Gaussians model fails

to represent the whole scene giving, for example, the

incorrect segmentation of Figure 1(b) (note that, due

to the symmetry of the distributions in orientation

space, there are other possible stationary points the

algorithm may converge to, including the \correct"

one).

To deal with multimodal textures like the one in

Figure 1(a), we propose an unsupervised divide-and-

conquer strategy. First, extract a suitable number of

(a) (b)

(c) (d)

Figure 1: (a): Original image. (b) Incorrect segmenta-

tion using a mixture of two Gaussians. (c) Segmenta-

tion with six Gaussian clusters. (d) Segmentation into

two texture classes, each one of which is represented

by a mixture of three Gaussian clusters.

mixture components using the EM algorithm; then,

group together those clusters which are likely to be-

long to the same texture. For example, in Figure 1(c)

we show the EM segmentation using six Gaussian com-

ponents. By suitably grouping these components into

two sets, we obtain the correct segmentation of Fig-

ure 1(d). In this case, each texture is described by a

mixture of three Gaussians.

How can we estimate the correct assignments

cluster{texture? Our algorithm determines a cost

function of cluster grouping that keeps

into account. A simple, non-iterative technique

allows us to determine the cluster groupings that min-

imize such function, and the �nal Bayesian assignment

is performed based on the new combined posterior dis-

tribution. Results on natural textured scene show the

e�ectiveness of the proposed method.

Our strategy for segmenting multimodal textures

is based on \grouping together" some of the com-

ponents of a given mixture model. More precisely,

consider a partition of the discrete set

= 1 . Let

(̂ ) =
1

( )
( ) ( ) (2)

^( ) = ( )
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We can rewrite (1) as

( ) = ^( ) (̂ ) (3)

The index in (3) labels the di�erent

in the scene; the index in (2) enumerates the clus-

ters within each texture class. A feature is as-

signed to the texture that maximizes ^( ) (̂ ) =

( ) ( ). It is important to note that, in gen-

eral, the set of pixels that are assigned to a class

by means of (3) the union of the sets of pix-

els assigned to the classes : grouping together

clusters determines new Bayesian assignments that are

not trivially derived from the original ones.

As anticipated in the Introduction, we will deter-

mine the groupings in (3) by exploiting the spatial

coherence of the class assignment function. More

precisely, we observe that the posterior probabilities

( ( )) and ( ( )) for two clusters and

belonging to the same texture are typically

. They can assume high values ( 1) only

in image areas corresponding to the same texture; for

homogeneous textures, it is reasonable to assume that,

within a \window of observability" of suitable scale,

we will normally �nd both pixels assigned to cluster

and pixels assigned to cluster . This notion is

exploited in the context of the recently proposed

criterion [6] for grouping \re-

dundant" clusters in a mixture model. We �rst dis-

cuss the maximum descriptiveness criterion, referring

the reader to [6] for more details. We then show its

application in the context of this work.

Consider a mixture model with density ( ) ex-

pressed by (1). The of the model

[6] is de�ned by

= = ( ) ( ) (4)

where the posterior probabilities ( ) are derived

from (1) using Bayes' rule: ( ) = ( ) ( ) ( ).

Let us examine each term of the sum in (4). The -

th cluster \describes" each feature by means of the

conditional likelihood ( ). The posterior probabil-

ity ( ) speci�es in a \soft" fashion which features

are actually assigned by the model to the -th cluster.

Thus, the integrals in the sum determine how well each

cluster describes the features that are assigned to it.

It is easily seen that models with \hard" assignment

rules have the highest descriptiveness (which can only

be less than or equal to ). Models with highly over-

lapping densities ( ) have smaller descriptiveness

for the same number of classes. The lowest value of

the descriptiveness ( =1) is achieved when all of the

conditional likelihoods are identical.

A very useful property of the descriptiveness is that

it can be easily estimated: a simple application of

Bayes' rule proves the following identity:

=
( )

( )
(5)

where [ ] is the expectation computed with respect to

the density ( ). The numerator of each term (5) can

thus be estimated by simply averaging ( ( )) over

the image. The denumerator is estimated by averaging

( ( )) over the image.

For our purposes, the descriptiveness of a model is

not used by itself; it is its when two or more

clusters are grouped together which is of interest to us.

Suppose that a new model is generated by grouping

two clusters (say, clusters and ) into a new \super-

cluster" according to the following rules:

( ) = ( ) + ( )

( ) = ( ) + ( )

( ) = ( ) + ( )

(6)

Note that the conditional likelihood de�ned in the last

row of (6) is such that the density ( ) de�ned by the

model does not change: our grouping operation (which

is equivalent to (3)) is purely formal. However, the

model descriptiveness will change (in general) as

an e�ect of cluster grouping. Indeed, it can be shown

that the model descriptiveness may only decrease

or remain unchanged when two or more clusters are

grouped together. The descriptiveness decreases the

most when clusters with well-separated conditional

distributions are grouped together, while highly over-

lapping distributions can be grouped with little de-

scriptiveness loss.

To decide which clusters should be grouped to-

gether into a super-cluster as by (6) (or (3)) in or-

der to reduce the number of texture classes, we may

look at the corresponding model descriptiveness decre-

ment � . The intuition is that clusters which are

highly overlapping in feature space (small � ) are the

\safest" choice for grouping. Thus, we should choose

the cluster grouping scheme that yields the smallest

value of � . We will call this strategy the

criterion. A fast sub-optimal

technique for minimizing the descriptiveness loss over

cluster groupings has been proposed in [6]. This al-
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gorithm greedily groups two clusters at a time, each

time minimizing � .

There is an interesting interpretation of the descrip-

tiveness which will be useful for our work. Suppose we

are grouping together two clusters of indices and .

Then, from (5) and (6) we have that

� =
( )

( ) + ( )
+

( )

( ) + ( )

2 [ ( ) ( )]

( ) + ( )
(7)

The last term in the sum above is the cross-correlation

between the two distributions, normalized with re-

spect to the average of the corresponding priors. Thus,

for given cluster descriptiveness , and prior prob-

abilities ( ), ( ), the two clusters will determine a

large � when grouped together if the two corre-

sponding distributions are uncorrelated. Since these

distributions are actually a function of the spatial po-

sition of the features ( ), we may use the signal

processing de�nition of cross-correlation as a function

of the displacement :

( ) = [ ( ( )) ( ( + ))] (8)

and rewrite the last term of (7) as .

Equation (4) may be rewritten as follows:

=
( )

( ) ( )
=

( )

( ) ( )
(9)

where now the expectation is computed over the joint

density ( ). Equation (9) suggests another crite-

rion for cluster grouping, based on the maximization

of the following functional:

^ = log
( )

( ) ( )
(10)

Here ^ is the Kullback-Leibler (K-L) divergence be-

tween the joint density ( ) and the product of the

marginal density ( ) and of the mass distribution

( ), which can be considered a generalized form of

mutual information. Thus, ^ represents the expected

dependence between the observed data and the under-

lying generative model. Being a K-L divergence, ^ is

always non-negative; it is shown in the Appendix that
^ never increases when two clusters are grouped to-

gether. Hence, we may choose to group together those

clusters which yield the smallest decrement of ^ . An

intuitive justi�cation of such a criterion is provided

by the following observation. Let us rewrite equation

(10) as
^ = ( ( )) [ ( ( ))] (11)

where now the expectation is computed over the den-

sity ( ), and ( ) is the entropy operator. Maximiz-

ing ^ corresponds to minimizing [ ( ( ))] (which

represents the mean \softness" of posterior assign-

ment), while at the same time maximizing the entropy

of the distribution of the priors. Thus, our criterion fa-

vors models characterized by \hard" assignments and

homogeneous prior distribution.

Experimental tests have shown that the results us-

ing this mutual information criterion are often less

convincing from a \perceptual" point of view than

those obtained with the descriptiveness criterion de-

scribed in Section 2.2. Indeed, depending on the \tem-

perature" of the original clustering algorithm, the en-

tropy of the prior distribution may dominate the sum

in (11), in which case this criterion simply tries to

make the distribution of the priors as uniform as pos-

sible.

Our goal is to �nd a criterion that tells us when

two clusters belong to the same texture, so that we

can group them together as in (3). The maximum de-

scriptiveness criterion described in the previous sec-

tion is not helpful if applied directly to the posterior

probabilities ( ): two di�erent clusters belonging

to the same texture class may be well separated in

feature space, as in the case of Figure 1. Instead, we

propose to apply the same criterion to the

versions of the posterior probabilities.

The intuition behind this strategy is the following.

As observed earlier, we expect that the posterior dis-

tributions for di�erent clusters belonging to the same

texture should be spatially correlated. By spatially

smoothing these distributions, we expect that a point

that was assigned with high probability to just one

cluster will now be softly assigned to a number of clus-

ters belonging to the same texture. Cluster grouping

is then determined by applying the maximumdescrip-

tiveness algorithm to the smoothed posterior distribu-

tions. Note that this procedure is used only to �nd

the correspondence cluster-texture: the �nal segmen-

tation is operated using the model (3), i.e., based on

non-�ltered distributions (see Figure 2).

We now give a more thorough justi�cation of our

method. Let ( ) be an isotropic Gaussian kernel

of suitable scale , normalized to unit area. Let
�( ) = ( ( )) ( ) be the �ltered version

of the posterior distribution ( ( )) (we dropped
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Figure 2: Scheme of our strategy for cluster grouping.

The images in the scheme refer to Figure 1.

the dependency on because now �( ) is a function

of a whole ensemble of features in a neighborhood of

). Since ( ) has unit area, it is easily proved that
�( ) for 1 is still a mass distribution for

each . Furthermore, �( ) = �( ) = ( ).

Now, consider the cross-correlation function

� ( ) = �( ) �( ( + ) (12)

It is easy to prove that

� ( ) = ( )�( ) (13)

where ( ) was de�ned in (8) and �( ) = ( ) (

) (note that �( ) is a unit-area Gaussian ker-

nel with standard deviation � = 2). Therefore,
� (0) is a weighted average of the values of the cross{

correlation between the -th and the -th posterior

distributions within a neighborhood of radius propor-

tional to 2 (which we will call the

).

Now consider the decrement of descriptiveness � �

consequent to grouping two clusters and after spa-

tial smoothing:

� � = � ( )

( ) + ( )
+ � ( )

( ) + ( )

2 � (0)

( ) + ( )
(14)

(a) (b)

(c) (d)

Figure 3: (a): \Zebras" image. (b): Segmentation us-

ing three clusters. (c) Segmentation using eight clus-

ters. (d): Segmentation into thee texture classes by

cluster grouping.

From (14) we maintain that, for given ( ( )),

( ( )) and priors ( ), ( ), the value � � depends

on the degree of local spatial correlation between the

two posterior distributions. Thus, the maximum de-

scriptiveness algorithm applied to the smoothed distri-

butions will correctly determine which cluster poste-

rior distributions best correlate, and will group them

together into common texture classes. An instance

of application of the proposed algorithm is shown in

Figure 1(d); more examples are described in the next

section.

We present here the segmentation results using our

method on three real-world textured images: the \Ze-

bras" image (Figure 3(a)), the \Cheeta" image (Figure

4(a)) and the \Pebbles" image (Figure 5(a)).

The vectors formed by the magnitude of the out-

put of complex Gabor �lters at three scales and four

orientations have been used as texture features. The

Gaussian �lter used to smooth the posterior distri-

butions for cluster-texture assignment had standard

deviation = 40, seven times larger than the stan-

dard deviation of the Gaussian envelope of the largest

Gabor �lter used. In both cases, we started with a

mixture model composed by eight Gaussian clusters.

This number has been chosen arbitrarily; validation

mechanisms for selecting a \suitable" number of clus-

ters can be found in the literature [12].

The EM algorithm was bootstraped with initial

parameter values determined by a previous K-means

clustering, and was stopped after twenty iterations.



3 Conclusions and discussion

(a) (b)

(c) (d)

Figure 4: (a): \Cheeta" image. (b): Segmentation us-

ing three clusters. (c) Segmentation using eight clus-

ters. (d): Segmentation into thee texture classes by

cluster grouping.

In passing, we notice that increasing the number of

clusters reduces the risk of missing global minima in

the EM iterations. A simple post-processing technique

[15] was used to enforce spatial coherence on the re-

sulting multimodal posterior distributions. This algo-

rithm is in essence a \soft" version of Besag's Iterated

Conditional Modes [1]; its relation to the mean �eld

theory is discussed in [16].

The segmentations relative to the original cluster-

ings into eight clusters are shown in Figures 3(c), 4(c)

and 5(c). After cluster grouping, we obtain the seg-

mentations of Figures 3(d) and 4(d) (three texture

classes), and 5(d) (two texture classes). For compari-

son, the direct EM segmentation into the same num-

ber of classes is shown in Figures 3(b), 4(b) and 5(b).

In the case of the \Zebras" image, our algorithm suc-

cesfully segmented the striped regions corresponding

to the zebras (5 clusters), and allocated one texture

class (2 clusters) to the grass and the large bush. Di-

rect EM clustering fails to segment the zebras into one

class due to the large variance in orientation and scale

corresponding to the distincitve stripes. In the case

of the \Cheeta" images, we notice that the shapes of

the foreground branch and of the cheeta have been

identi�ed (although not perfectly). Several small ar-

eas around the larger tree branch are misclassi�ed due

to their similarity with the polka-dot texture on the

cheeta's skin. More remarkably, the cluttered back-

ground has been segmented almost completely into

just one class, the union of six distinct clusters. In

the case of the\Pebbles" image, one texture class (1

(a) (b)

(c) (d)

Figure 5: (a): \Pebbles" image. ((b): Segmentation

using two clusters. (c) Segmentation using eight clus-

ters. (d): Segmentation into two texture classes by

cluster grouping.

cluster) has been allocated to the characteristic surface

of some 
at rocks in the scene. Note that the \back-

ground" texture class contains clusters corresponding

to dark and bright areas as well as to edge areas.

In terms of implementation complexity, we observe

that the bulk of the computation is due to the EM iter-

ations (for which, however, acceleration method exist

[7]). The determination of the cluster-texture assign-

ments takes a proportionally negligible time, using the

greedy maximum descriptiveness strategy of [6].

We presented a divide-and-conquer strategy for tex-

ture segmentation. The behavior of the texture fea-

tures in the scene is �rst modeled by a number of

Gaussian clusters, estimated via Expectation Maxi-

mization. Then, selected cluster sets are grouped to-

gether to form texture classes. Spatial correlation of

the posterior cluster distributions is at the basis of our

cluster grouping criterion. Despite its simplicity, this

algorithm can model even complex and multimodal

distributions, typical of natural outdoor images.

It is instructive to compare our method with other

statistic-based techniques which perform clustering on

parameter vectors obtained by local statistical analy-

sis. Indeed, some of the earliest �lter{based segmen-

tation algorithms [13][4] estimate the local variance of

the analysis �lter outputs (by performing squaring fol-

lowed by spatial smoothing) and use these values for
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segmentation. More recent variations compute local

histograms of the �lter outputs. Such approaches are

haunted by the problem of selecting an appropriate

scale of the analysis window, be it the standard devia-

tion of the smoother or the size of the region used for

computing local histograms. The larger the analysis

window, the more accurate the local statistics, but the

coarser the resolution of the �nal segmentation. Our

methods works directly on the texture features, not

on their local statistics. Of course, we need to select

a scale for the \observation window", but this value

does not a�ect the resolution of the �nal class assign-

ment, which is performed using unsmoothed posterior

distributions.

A drawback of our technique is that clusters are

grouped by the \hard" scheme of (2). This can cause

problems if the same cluster appears in two or more

texture classes. A more general grouping solution,

which is the object of current research, would de�ne

the mixture model (3) with

^( ) = ( )

(̂ ) =
(15)

where 0 and = 1. The parameters

should be chosen so as to maximize the resulting

model descriptiveness.

We will prove that term ^ in (10) can never in-

crease if two clusters ( ) are grouped together as in

(6). We have that

� ^ =

( ) ( ) log + ( ) ( ) log

( ) ( ( ) + ( )) log =

( ) ( ) log +

( ) ( ) log =

( ) ( ) log + ( ) ( ) log

(16)

Thus, � ^ is a linear combination with non-

negative coe�cients of two Kullback-Leibler diver-

gences, and therefore it is always non-negative.
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